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can be parsed in O(n**3) by a wide range of algorithms, GPSG parsers
would appear to run in polynomial time. This widely-assumed GPSG
'efficient parsability'' result is misleading: here we prove that the

* universal recognition problem for current GPSG theory is
exponential-polynomial time hard, and assuredly intractable. The paper
pinpoints sources of complexity (e.g. metarules and the theory of
syntactic features) in the current GPSG theory and concludes with some
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ABSTRACT:

An important goal of computational linguistics has been to use linguistic theory
to guide the construction of computationally efficient real-world natural lan-
guage processing systems. At first glance, generalized phrase structure grammar
(GPSG) appears to be a blessing on two counts. First, the precise formalisms
of GPSG might be a direct and transparent guide for parser design and imple-
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ity (e.g. metarules and the theory of syntactic features) in the current GPSG
theory and concludes with some linguistically and computationally motivated
restrictions on GPSG.

This report describes research done in part at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for the Laboratory's artificial
intelligence research has been provided in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract N00014-
80-C-0505. This paper will be presented at the 1986 ACL Conference in June.

@Eric Sven Ristad, 1986

86 11 25 152
4,4



I INTRODUCTION

1 Introduction

An important goal of computational linguistics has been to use linguistic the-
ory to guide the construction of computationally efficient real-world natural
language processing systems. Generalized Phrase Structure Grammar (GPSG)
linguistic theory holds out considerable promise as an aid in this task. The
precise formalisms of GPSG offer the prospect of a direct and transparent guide
for parser design and implementation. Furthermore, and more importantly,
GPSG's weak context-free generative power suggests an efficiency advantage
for GPSG-based parsers. Since context-free languages can be parsed in poly-
nomial time, it seems plausible that GPSGs can also be parsed in polynomial
time. This would in turn seem to provide "the beginnings of an explanation for
the obvious, but largely ignored, fact that humans process the utterances they
hear very rapidly (Gazdar,1981:155)."'

In this paper I argue that the expectations of the informal complexity argu-
ment from weak context-free generative power are not in fact met. I begin by
examining the computational complexity of metarules and the feature system
of GPSG and show that these systems can lead to computational intractability.
Next I prove that the universal recognition problem for current GPSG theory is
Exp-Poly hard, and assuredly intractable.2 That is, the problem of determining
for an arbitrary GPSG G and input string z whether z is in the language L(G)
generated by G, is exponential polynomial time hard. This result puts GPSG-
Recognition in a complexity class occupied by few natural problems: GPSG-
Recognition is harder than the traveling salesman problem, context-sensitive
language recognition, or winning the game of Chess on an n x n board. The
complexity classification shows that the fastest recognition algorithm for GPSGs
must take exponential time or worse. One role of a computational analysis is to
provide formal insights into linguistic theory. To this end, this paper pinpoints
sources of complexity in the current GPSG theory and concludes with some
linguistically and computationally motivated restrictions.

2 Complexity of GPSG Components

A generalized phrase structure grammar contains five language-particular com-
ponents - immediate dominance (ID) rules, metarules, linear precedence (LP)

'See also Joshi, "Tree Adjoining Grammars" p.226, in Natural Language Parsing (1985) ed.

by D. Dowty, L. Karttunen, and A. Zwicky, Cambridge University Press: Cambridge, and
'Exceptions to the Rule," Science News 128: 314-315.

2 We use the universal problem to more accurately explore the power of a grammatical

formalism (see section 3.1 below for support). Ristad(1985) has previously proven that the
universal recognition problem for the GPSG's of Gardar(1981) is NP-hard and likely to be

intractable, even under severe metarule restrictions.

~tL~hA



2 COMPLEXITY OF GPSG COMPONENTS 2

statements, feature co-occurrence restrictions (FCRs), and feature specification
defaults (FSDs) - and four universal components - a theory of syntactic fea-
tures, principles of universal feature instantiation, principles of semantic inter-
pretation, and formal relationships among various components of the grammar.3

Syntactic categories are partial functions from features to atomic feature
values and syntactic categories. They encode subcategorisation, agreement,
unbounded dependency, and other significant syntactic information. The set K
of syntactic categories is inductively specified by listing the set F of features,
the set A of atomic feature values, the function p that defines the range of
each atomic-valued feature, and a set R of restrictive predicates on categories
(FCRs).

The set of ID rules obtained by taking the finite closure of the metarules on
the ID rules is mapped into local phrase structure trees, subject to principles
of universal feature instantiation, FSDs, FCRs, and LP statements. Finally,
local trees are assembled to form phrase structure trees, which are terminated
by lexical elements.

To identify sources of complexity in GPSG theory, we consider the isolated
complexity of the finite metarule closure operation and the rule to tree map-
ping, using the finite closure membership and category membership problems,
respectively. Informally, the finite closure membership problem is to determine
if an ID rule is in the finite closure of a set of metarules M on a set of ID rules
R. The category membership problem is to determine if a category C or a legal
extension of C is in the set K of all categories based on the function p and the
sets A, F and R. Note that both problems must be solved by any GPSG-based
parsing system when computing the ID rule to local tree mapping.

The major results are that finite closure membership is NP-hard and cat-
egory membership is PSPAOE-hard. Barton(1985) has previously shown that
the recognition problem for ID/LP grammars is NP-hard. The components of
GPSG theory are computationally complex, as is the theory as a whole.

Assumptions. In the following problem definitions, we allow syntactic cate-
gories to be based on arbitrary sets of features and feature values. In actuality,
GPSG syntactic categories are based on fixed sets and a fixed function p. As
such, the set K of permissible categories is finite, and a large table containing
K could, in principle, be given. 4 We generalize to arbitrary sets and an arbi-
trary function p to prevent such a solution while preserving GPSG's theory of

gThis work is based on current GPSG theory as presented in Gazdar et. al. (1985),
hereafter GKPS. The reader is urged to consult that work for a formal presentation and
thorough exposition of current GPSG theory.

'This suggestion is of no practical significance, because the actual number of G PSG syntac-
tic categories is extremely large. The total number of categories, given the 25 atomic features
and 4 category-valued features, is:



2 COMPLEXITY OF CPSG COMPONENTS 3

syntactic features. 5 No other modifications to the theory are made.

An ambiguity in GKPS is how the FCRs actually apply to embedded categories. 6

Following Ivan Sag (personal communication), I make the natural assumption
here that FCRs apply top-level and to embedded categories equally.

2.1 Metarules

The complete set of ID rules in a GPSG is the maximal set that can be arrived
at by taking each metarule and applying it to the set of rules that have not
themselves arisen as a result of the application of that metarule. This maximal
set is called the finite closure (FC) of a set R of lexical ID rules under a set M
of metarules.

The cleanest possible complexity proof for metarule finite closure would fix
the GPSG (with the exception of metarules) for a given problem, and then
construct metarules dependent on the problem instance that is being reduced.
Unfortunately, metarules cannot be cleanly removed from the GPSG system.
Metarules take ID rules as input, and produce other ID rules as their output.
If we were to separate metarules from their inputs and outputs, there would be
nothing left to study.

The best complexity proof for metarules, then, would fix the GPSG mod-
ulo the metarules and their input. We ensure the input is not inadvertently
performing some computation by requiring the one ID rule R allowed in the re-
duction to be fully specified, with only one 0-level category on the left-hand side
and one unanalyzable terminal symbol on the right-hand side. Furthermore, no
FCRs, FSDs, or principles of universal feature instantiation are allowed to ap-
ply. These are exceedingly severe constraints. The ID rules generated by this
formal system will be the finite closure of the lone ID rule R under the set M

J K = K 4  = 326((1 + 321)((1 + 326)((1 + 325)(1 + 325)1)2)3)4
= 325(1 + 325)64 > 31626 > 10776

See page 10 for details. Many of these categories will be linguistically meaningless, but all
GPSGs will generate all of them and then filter some out in consideration of FCRs, FSDs,
universal feature instantiation, and the other admissible local trees and lexical entries i.1 the
GPSG. While the FCRs in some grammars may reduce the number of categories, FCRs are
a language-particular component of the grammar. The vast number of categories cited above., is inherent in the GPSG framework.

5Our goal is to identify sources of complexity in GPSG theory. The generalization to
arbitrary sets allows a fine-grained study of one component of GPSG theory (the theory of
syntactic features) with the tools of computational complexity theory. Similarly, the chess
board is uncontroversially generalized to size n x n in order to study the computational
complexity of chess.

eA category C that is defined for a feature f, f E (F - Atom) n DOM(C) (e.g. f = SLASH ),
contains an embedded category C,, where C(f) = C.. GKPS does not explain whether FCR's
must be true of C6 as well as C.

I% Z" "" .. .4 . "'.



2 COMPLEXITY OF GPSG COMPONENTS 4

of metarules.

The (strict, resp.) finite closure membership problem for GPSG metarules
is: Given an ID rule r and sets of metarules M and ID rules R, determine if 3r'
such that r' :_ r (r' = r, resp.) and r' E FC(M, R).

Theorem 1 Finite Closure Membership is NP-hard

Proof: On input 3-CNF formula F of length n using the m variables zx ... xn,
reduce 3-SAT, a known NP-complete problem, to Metarule-Membership in poly-
nomial time.

The set of ID rules consists of the one ID rule R, whose mother category
represents the formula variables and clauses, and a set of metarules M s.t. an
extension of the ID rule A is in the finite closure of M over R iff F is satisfiable.
The metarules generate possible truth assignments for the formula variables, and
then compute the truth value of F in the context of those truth assignments.

Let w be the string of formula literals in F, and let wi denote the i4 symbol
in the string w.

1. The ID rules R, A

R: F -- <satisfiability>

A: [[STAGE 311 - <satisfiable>

where
<satisfiable> is a terminal symbol

<satisfiability> is a terminal symbol
F= {fy, 01:1<im}

U {[ci 01:1< i <
U {[STAGE 1])

2. Construct the metarules

(a) m metarules to generate all possible assignments to the variables

Vi, 1 <i <m

{[y, 0],[STAGE I}-- W

{[yj 11,[STAGE 1}- W

(b) one metarule to stop the assignment generation process

'I
9& ' .. XZl% ~,Z, %k h XY"., 'v-. 4" " - -"" ""< - ,,""",< ,.



2 COMPLEXITY OF GPSG COMPONENTS 5

{[STAGE 11) - W

4 (2)

{[STAGE 2]) - W

(c) Iw I metarules to verify assignments

Vi, j,k 1<i<LI, 1__j_<m, O<k<2,
if tN-k = z, then construct the metarule

{[y. 11, [c, 01, [STAGE 2]} -- W
4 (3)

{[yj 1], [ci 1], (STAGE 21} -- W
Vi, i, k l !_ i < 1-1, 1 < j!5_ rn, 0 < k < 2,

if W3N-k = r7, then construct the metarule

{[y 01, [c 0], [STAGE 21}- W

4 (4)
{1!y 0], Ici 1], [STAGE 21) -+ W

(d) Let the category C = {[c 11: 1 < i < L!E}. Construct the metarule

CSTAGE 2)--. W
4. (5)

{[STAGE 31} -* <satisfiable>

The reduction constructs 0(1 w 1) metarules of size log(I w 1), and clearly may
be performed in polynomial time: the reduction time is essentially the number
of symbols needed to write down the GPSG. Note that the strict finite closure
membership problem is also NP-hard. One need only add a polynomial number
of metarules to "change" the feature values of the mother node C to some
canonical value when C(STAGE ) = 3 - all 0, for example, with the exception
of STAGE . Let F ={fyi 0]: 1<i< rn} U {[ci 01: 1 <i< [L--. Then A
would 

be

A: F[STAGE 3] -- <satisfiable>

Q.e.D

The major source of intractability is the finite closure operation itself. In-
formally, each metarule can more than double the number of ID rules, hence by
chaining metarules (i.e. by applying the output of a metarule to the input of the
next metarule) finite closure can increase the number of ID rules exponentially. 7

7 More precisely, the metarule finite closure operation can increase the size of a GPSG G

9%

- J! i
- ll



2 COMPLEXITY OF GPSG COMPONENTS 6

2.2 A Theory of Syntactic Features

Here we show that the complex feature system employed by GPSG leads to
computational intractability. The underlying insight for the following complex-
ity proof is the almost direct equivalence between Alternating Turing Machines
(ATMs) and syntactic categories in GPSG. The nodes of an ATM computa-
tion correspond to 0-level syntactic categories, and the ATM computation tree
corresponds to a full, n-level syntactic category. The finite feature closure re-
striction on categories, which limits the depth of category nesting, will limit
the depth of the corresponding ATM computation tree. Finite feature closure
constrains us to specifying (at most) a polynomially deep, polynomially branch-
ing tree in polynomial time. This is exactly equivalent to a polynomial time
ATM computation, and by Chandra and Stockmeyer(1976), also equivalent to
a deterministic polynomial space-bounded Turing Machine computation.

As a consequence of the above insight, one would expect the GPSG Category-
Membership problem to be PSPACE-hard. The actual proof is considerably
simpler when framed as a reduction from the Quantified Boolean Formula (QBF)
problem, a known PSPACE-complete problem.

Definition:

The QBF problem is defined as follows. "Quantified Boolean formulas (QBF)
are built from variables, the operators V, A, and -, parentheses, and the quan-

-V- tifiers 3 ('there exists') and V ('for all'). When defining QBF's recursively, we
find it useful simultaneously to define free occurrences of variables (occurrences
to which no quantifier applies), and the scope of a quantifier (those occurrences
to which the quantifier applies).

1. If x is a variable, then it is a QBF. The occurrence of z is free.

2. If E, and E2 are QBF's, so are --(Ej), (El) V (E 2), and (E,) A (E 2). An
occurrence of x is free or bound, depending on whether the occurrence is
free or bound in E1 or E2 . Redundant parentheses can be omitted.

3. IF E is a QBF, then 3z(E) and Vx(E) are QBF's. The scopes of 3x and
Vx are all free occurrences of x in E. (Note that there may also be bound
occurrences of z in E; theses are not part of the scope.) Free occurrences
of z in E are bound in 3x(E) and Vz(E). All other occurrences of variables

worse than exponentially: from IGI to O(1 G 1
2
1). Given a set of ID rules R of symbol size n,

* and a set M of m metarule, each of size p, the symbol size of FC(MR)is 0(n '
-) = 0(1G 2P).

* Each metarule can match the productions in R 0(n) different ways, inducing 0(n + p) new
symbols per match: each metarule can therefore square the ID rule grammar size. There are
mi metarules, so finite closure can create an ID rule grammar with 0(n

2
m) symbols.

N -



2 COMPLEXITY OF GPSG COMPONENTS 7

in E are free or bound, depending on whether they are free or bound in
E.

"A QBF with no free variables has a value of either true or false, which

we denote by the Boolean constants 1 and 0. The value of such a QBF is
determined by replacing each subexpression of the form 3x(E) by E 0 A E, and
each subexpression of the form Vx(E) by E0 V El, where Eo and E, are E
with all occurrences of x in the scope of the quantifier replaced by 0 and 1,
respectively (Hopcraft and Ullman,1979:343-344)."

The QBF problem is {QIYIQ 2 Y2 ... Qmymflyiy 2 ,...,ym) I Q, E {V, 3},
where the yi are boolean variables, F is a boolean formula of length n in con-
junctive normal form with exactly three variables per clause (3-CNF), and the
quantified formula is true}.

Let a specification of K be the arbitrary sets of features F, atomic features
Atom, atomic feature values A, and feature co-occurrence restrictions R and let

.: ,. p be an arbitrary function, all equivalent to those defined in chapter 2 of GKPS.
The category membership problem is: Given a category C and a specification of
a set K of syntactic categories, determine if BC' s.t. C' _J C and C' E K.

Theorem 2 GPSG Category-Membership is PSPACE-hard

Proof: By reduction from QBF. On input formula

- = Q1y1Q2y2 ... QymF(y, y 2 , ... y,,)

we construct an instance P of the Category-Membership problem in poly-
nomial time, such that 0 E QBF if and only if P is true.

Consider the QBF as a strictly balanced binary tree, where the i'h quantifier
Qi represents pairs of subtrees < Tt, Tf > such that (1) Tt and Tf each immedi-
ately dominate pairs of subtrees representing the quantifiers Qi+I ... Q", and
(2) the i

t h variable yi is true in Tt and false in Tf. All nodes at level i in the
whole tree correspond to the quantifier Qi. The leaves of the tree are differ-
ent instantiations of the formula F, corresponding to the quantifier-determined
truth assignments to the m variables. A leaf node is labeled true if the instan-
tiated formula F that it represents is true. An internal node in the tree at level
i is labeled true if

1. Q, = "3 " and either daughter is labeled true, or

2. Q, = "'" and both daughters are labeled true.
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Otherwise, the node is labeled false.

Similarly, categories can be understood as trees, where the features in the
domain of a category constitute a node in the tree, and a category C immediately
dominates all categories C' such that 3f E ((F - Atom) n DOM(C))[C(f) = C'J.

In the QBF reduction, the atomic-valued features are used to represent the m
variables, the clauses of F, the quantifier the category represents, and the truthlabel of the category. The category-valued features represent the quantifiers -
two category-valued features qk, q' represent the subtree pairs < T, T! > for
the quantifier Qk. FCRs maintain quantifier-imposed variable truth assignments
"down the tree" and calculate the truth labeling of all leaves, according to F,
and internal nodes, according to quantifier meaning.

Details. Let w be the string of formula literals in F, and wi denote the 1th

symbol in the string w. We specify a set K of permissible categories based on
A, F, p, and the set of FCRs R s.t. the category [[LABEL ill or an extension of
it is an element of K iff 0 is true.

First we define the set of possible 0-level categories, which encode the formula
F and truth assignments to the formula variables. The feature wi represents
the formula literal wi in w, yj represents the variable yi in fl, and ci represents
the truth value of the it" clause in F.

Atom= {LEVEL ,LABEL }
U {wo:1 < i<w}
U {yj: 1 < j! < m}

U {c, 1< i< LTJ.}
F-Atom = {qk, q:1<k<m}
p°(LEVEL) = {k:l<k<m+l}
pO(f) = {0, 1} Vf E Atom- {LEVEL }

FCR's are included to constrain both the form and content of the guesses:

1. FCR's to create strictly balanced binary trees:

Vk, 1<k<m,

[LEVEL kj = [qA [lyk 1[LEVEL k + 1J]j&[q' IIYk 0]ILEVEL k + 11]

2. FCR's to ensure all 0-level categories are fully specified:

IP W,-

a- ,.
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Vi, 1<i< T3

[l,] -[W 3i..J]&[W3i1&[W3iJ

[LABEL [ [c4]

Vk, I<k<m,
[LABEL ]I [ik]

3. FCR's to label internal nodes with truth values determined by quantifier
meaning:

Vk, I<k<rn,
if Qk = "V", then include:

[LEVEL k]&[LABEL 1 -- [qk [[LABEL l]]&[q' [[LABEL 1111
[LEVEL k]&[LABEL 0] - [qt [[LABEL 0]]] V [q' [[LABEL 0]]]

otherwise Qk = "i", and include:
[LEVEL kj&[LABEL 11 -- [q, [[LABEL 1111 V [qk, [[LABEL 11]]

[LEVEL kJ&[LABEL 0] - [qk [[LABEL o]]1I&qk [[LABEL 0111

The category-valued features qk and q' represent the quantifier Qk. In

the category value of qk, the formula variable yk = 1 everywhere, while in
the category value of qk, y = 0 everywhere.

4. one FCR to guarantee that only satisfiable assignments are permitted:

[LEVEL 1] D [LABEL 11

5. FCR's to ensure that quantifier assignments are preserved "down the tree":

Vik 1<i<k<m,

[yi 1] D [qk [[Yi llll&[q' [[y, 1]]]
[y, 01 D [qk [[y, 0111&[q', [[y, 0111

6. FCR's to instantiate variable assignments into the formula F:

Vi, k 1 <i <]wl and 1< k<m,

if wi = Yk, then include:
[Yk 11 D [w, 11

tyk 0] D [w, 0]
else if wi T k, then include:

(Yk 11 D i 01
[Yk 01 D [w, 11

4~,

*1'

* -7'CY ~ *



3 COMPLEXITY OF GPSG-RECOGNITION 10

7. FCR's to verify the guessed variable assignments in leaf nodes:

Vi I <i 1 1,[C, ol - 1W,-2 ol&[W ,-I ol [, , 01

[c 1] E [W3,- 2 1] V [ws-1 11 V [W, 11
[LEVEL m + 1&[c, 01 D (LABEL 01

[LEVEL m + 1J&[cI II&[c2 1& ... &IC/311 D [LABEL 11

The reduction constructs O(lw) features and O(m 2) FCRs of size O(log m)
in a simple manner, and consequently may be seen to be polynomial time.

The primary source of intractability in the theory of syntactic features is
the large number of possible syntactic categories (arising from finite feature
closure) in combination with the computational power of feature co-occurrence
restrictions." FCRs of the 'disjunctive consequence' form [If V] D lit v1] V

... V [f v,,] compute the direct analogue of Satisfiability: when used in con-
junction with other FCRs, the GPSG effectively must try all n feature-value
combinations.

3 Complexity of GPSG-Recognition

Two isolated membership problems for GPSG's component formal devices were
considered above in an attempt to isolate sources of complexity in GPSG the-
ory. In this section the recognition problem (RP) for GPSG theory as a whole
is considered. I begin by arguing that the linguistically and computationally
relevant recognition problem is the universal recognition problem, as opposed
to the fixed language recognition problem. I then show that the former problem
is exponential-polynomial (Exp-Poly) time-hard.

'Finite feature closure admits a surprisingly large number of poesible categories. Given a
specification (F, Ato A, R, p) of K, let a =1 Atoaf and b =1 F - Ateal. Assume that all atomic
features are binary: a feature may be +,-, or undefined and there are 31 0-level categories.
The b category-valued features may each assume O(3) possible value. in a I-level category,
so IKII= 0(3(r)). More generally,

IK = Kb J= 0(3(. E"-, T,!T)) = , 3 .b~ A 0 (3 .r) 0 (3&"')

where E& 1 converges to e s 2.7 very rapidly and a,b = O(IG1); a = 25, b = 4 in GKPS.
he smalet category in K will be I symbol (null set), and the largest, maximally-specified,

category will be of symbol-size log IK J= 0(a. b!).
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3.1 Defining the Recognition Problem

The universal recognition problem is: given a grammar G and input string x,
is x E L(G)?. Alternately, the recognition problem for a class of grammars
may be defined as the family of questions in one unkown. This fixed language
recognition problem is: given an input string x, is x E L for some fixed language
L?. For the fixed language RP, it does not matter which grammar is chosen to
generate L - typically, the fastest grammar is picked.

It seems reasonable clear that the universal RP is of greater linguistic and
engineering interest than the fixed language RP. The grammars licensed by
linguistic theory assign structural descriptions to utterances, which are used to
query and update databases, be interpreted semantically, translated into other
human languages, and so on. The universal recognition problem - unlike the
fixed language problem - determines membership with respect to a grammar,
and therefore more accurately models the parsing problem, which must use a
grammar to assign structural descriptions.

The universal RP also bears most directly on issues of natural language
acquisition. The language learner evidently possesses a mechanism for selecting
grammmars from the class of learnable natural language grammars to on the
basis of linguistic inputs. The more fundamental question for linguistic theory,
then, is "what is the recognition complexity of the class to?". If this problem
should prove computationally intractable, then the (potential) tractability of
the problem for each language generated by a G in the class is only a partial
answer to the linguistic questions raised.

Finally, complexity considerations favor the universal RP. The goal of a
complexity analysis is to characterize the amount of computational resources
(e.g. time, space) needed to solve the problem in terms of all computation-
ally relevent inputs on some standard machine model (typically, a multi-tape
deterministic Turing machine). We know that both input string length and
grammar size and structure affect the complexity of the recognition problem.
Hence, excluding either input from complexity consideration would not advance
our understanding.

9

Linguistics and computer science are primarily interested in the universal
recognition problem because both disciplines are concerned with the formal
power of a family of grammars. Linguistic competence and performance must

9This "consider all relevant inputs" methodology is universally assumed in the formal lan-
guage and computational complexity literature. For example, Hopcraft and Ullman(1979:139)
define the context-free grammar recognition problem as: "Given a CFG G = (V, T, P,S) and
a string z in T, is z in L(G)?". Garey and Johnson(1979) is a standard reference work in
the field of computational complexity. All 10 automata and language recognition problems
covered in the book (pp. 265-271) are universal, i.e. of the form "Given an instance of a ma-
chine/grammar and an input, does the machine/grammar accept the input?" The complexity
of these recognition problems is alwaya calculated in terms of grammar and input size.
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3 COMPLEXITY OF GPSG-RECOGNITION 12

be considered in the larger context of efficient language acquisition, while com-
putational considerations demand that the recognition problem be characterized
in terms of both input string and grammar size. Excluding grammar size from
complexity consideration in order to argue that the recognition problem for a
family of grammars is tractable is akin to fixing the size of the chess board
in order to argue that winning the game of chess is tractable: neither claim
advances our scientific understanding of chess or natural language.

3.2 GPSG-Recognition is Exp-Poly hard

The following proof reduces instances of a polynomial-space bounded alternating
Turing Machine computation to instances of GPSG-Recognition.

Definition:'
0

An alternating Turing Machine is like a nondeterministic TM, except that
some subset of its states will be referred to as universal states, and the remainder
as existential states. A nondeterministic TM is an alternating TM with no
universal states.

A k-tape alternating Turing Machine (ATM) is a 10-tuple M =< Q, E, r, S, #, k, a, qo, F, U >,
where

Q, qo, F = set of states, initial state, set of accepting states, respectively
E, r = input, tape alphabets, E c r
$, # = endmarker, blank symbol; $, # E r - E
k = number of read-write tapes, k > 1
6 c (Q x rl+ ') x (Q x r" x (L, R}k+l) is the next move relation
U = set of universal states, U C Q
Q - U = set of existential states

The TM has a read-only input tape, with the input w E E" written as $w$,
and the reading head initialized to the first symbol of w. The k work tapes are
one-way infinite, and are initially blank. A configuration of the ATM consists
of the state, head positions, and contents of the k + 1 tapes. One move of the
TM consists of reading one symbol from the input tape and moving the heads
left/right as allowed by 6, along with a change of state of the machine. No
move is allowed if the head on the input tape is not within the two end markers
(inclusive). If C is a configuration of M, let NextM(C) be the set of possible
configurations after one move of M. We say a configuration is existential (reap.

"°Taken from Chandra and Stockmeyer(1976), with the restriction that the work tapes are
one-way infinite, instead of two-way infinite.

I'A
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universal, accepting) if the state of the TM in that configuration is an existential
(reap. universal, accepting) state.

The computation of an alternating TM M on an input w is a possibly infinite
tree where the nodes correspond to TM configurations. Technically, each node
is of the form (x, C) where x E (0, 1 .... )*, and C is the configuration. The
root is (e, Co) where Co is the initial configuration, and the sons of (z, C) are
all elements (zi, C,) where NextM(C) = (Co, C1,...,Ck}. The criterion for
acceptance is as follows. Let N be the set of nodes in the computation tree
of TM M on input w. We label the nodes of the tree either true or false
according to the following criteria. A labeling L : N -- { true, false } is said
to be acceptable if

1. if C is an accepting configuration

L(x, C) = true

2. if C is an existential configuration

L(xC) = V L(xiC')
C'ENext,(c)

3. if C is a universal configuration

L(x, C) = A L(xi, C')
C'ENextA(c)

By convention, V (resp. A) of an empty set is false (resp. true). M accepts
the input w if and only if L(e, C0) = true for all acceptable labelings L.

Note that alternating TMs without universal states accept exactly as do the
corresponding nondeterministic TMs.

Theorem 3 GPSG-Recognition is Exp-Poly time-hard

Proof: By direct simulation of a polynomial space bounded alternating Turing
Machine M on input w.11

"Without loss of generality, we use a 1-tape ATM, so

6 C (Q x r x r) x (Q x r x (L,R} x {L,R))
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Let S(n) be a polynomial in n. Then, on input M, a S(n) space-bounded one
tape alternating Turing Machine (ATM), and string w, we construct a GPSG
G in polynomial time such that w E L(M) iff $0whl12 ... wun$n+l E L(G).

By Chandra and Stockmeyer(1976),

ASPACE(S(n)) U DTIME~cs("))
C>0

where ASPACE(S(n)) is the class of problems solvable in space S(n) on an
ATM, and DTIME(F(n)) is the class of problems solvable in time F(n) on a
deterministic Turing Machine. As a consequence of this result and our following
proof, we have the immediate result that GPSG-Recognition is DTIMEc s (nc )-

hard, for all constants c, or Exp-Poly time-hard.

The nodes of the ATM computation tree are represented by syntactic cate-
gories in K ° - one feature for every tape square, plus three features to encode
the ATM tape head positions and the current state. The reduction is limited
to specifying a polynomial number of features in polynomial time; since these
features are used to encode the ATM tape, the reduction may only specify
polynomial space bounded ATM computations.

The ID rules encode the ATM Nextm() relation, i.e. C -. Nextm(C) for
a universal configuration C. The reduction constructs an ID rule for every
combination of possible head position, machine state, and symbol on the scanned
tape square. Principles of universal feature instantiation transfer the rest of the
instantaneous description (i.e. contents of the tape) from mother to daughters
in ID rules.

Let Nextm(C) = {Co, Ci,..., Ck). If C is a universal configuration, then
we construct an ID rule of the form

C - Co,..., Ch (6)

Otherwise, C is an existential configuration and we construct the k + 1 ID
rules

C-.C, Vi, o<i<k (7)

A universal ATM configuration is labeled accepting if and only if it has halted
and accepted, or if all of its daughters are labeled accepting. We reproduce this
with the ID rules in 6 (or 8), which will be admissible only if all subtrees rooted
by the RHS nodes are also admissible.

An existential ATM configuration is labeled accepting if and only if it has
halted and accepted, or if one of its daughters is labeled accepting. We reproduce
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this with the ID rules in 7 (or 9), which will be admissible only if one subtree
rooted by a RHS node is admissible.

All features that represent tape squares are declared to be in the HEAD
feature set, and all daughter categories in the constructed ID rules are head
daughters, thus ensuring that the Head Feature Convention (HFC) will transfer
the tape contents of the mother to the daughter(s), modulo the tape writing
activity specified by the next move relation.

Details.

Let

ResultOM (i, a, d) =S[[HADO i + 1], [i a], [A 11 if d= R
[[HEADO i - 1, [i a], [A 111 if d = L

Result1M(3 c, p, d) =
[[HFADI , + 1j, [rj c][STATE p1] if d = R

[[HEAD i - 1], [rI c][STATE p]i if d = L

TransM(q,a,b) = {(p,c, di,d 2 ): ((q,a,b), (p,c,di,d2)) E 6)

where

a is the read-only (R/O) tape symbol currently be-
ing scanned

b is the read-write (R/W) tape symbol currently be-
ing scanned

d, is the R/O tape direction
d2  is the R/W tape direction

The GPSG G contains:

1. Feature definitions

A category in K0 represents a node of an ATM computation tree, where
the features in Atom encode the ATM configuration. Labeling is per-
formed by ID rules.
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(a) definition of F, Atom, A

F =Atom = (STATE , IEADO ,HEAD1 ,A)
U {s:O0 s IWI +1)

A = QuEur ;as defined earlier

(b) definition of p0

P0 (A) = (1, 2,3)
po (STATE )= Q ;the ATM state set

p0 (HEAD1 ) (i:1 5i SIWI)
Vf E {i: 0 <-i <IwI +1}

PO(f) = E u $} ;the ATM input alphabet

YI E {ri: 1 < j:5 S(IwI)}
po(f) = r ; the ATM tape alphabet

(c) definition of HEAD feature set

HEAD = i:0 o ti<Iwl +1} u {r,: 1< < 5s(Iwl)}

(d) FORs to ensure full specification of all categories except null ones.

VIf, f E Atom, [STATE I D [11

2. Grammatical rules

if Transm (q, a, b) #0, construct the following ID rules.

(a) if q E U (universal state)

([HEADO fl, (i al, [HEAD1il, jr, b], [STATE ql, [A 1)) -

(Resultom (i, a, dlk:) U ResultiM (j, ck, pAh, d2k):(8
(phi ck, dlk,d2k) E TransM (q, a, b)}

where all categories on the RHS are heads.

(b) otherwise q E Q - U (existential state)

V(pk, ck, dl k,d2k) E TransM (q, a, b),

(I""AD ill [i a], [HEADI jj, [r, b), [STATE qJ, [A 11) - (9)
ResultOm(i, a, dib) U Resultim(3, cl,, pl,, d~k

where all categories on the RHS are heads.
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(c) One ID rule to terminate accepting states, using null-transitions.

{ISTATE h], I Yj)--,e (10)

(d) Two ID rules to read input strings and begin the ATM simulation.
The A feature is used to separate functionally distinct components
of the grammar. [A 1] categories participate in the direct ATM
simulation, [A 2] categories are involved in reading the input string,
and the [A 3] category connects the read input string with the ATM
simulation start state.

START- {[A 11),{[A 21}

{[A 21-.1 ([A 2]), (A 2]}

wh-re all daughters are head daughters, and where

START = {[HEADO 11, [HEAD1 11, (STATE a], fA 31)
u {Ir, #i:1 < __S(wI)}

(e) the lexical rules,

Va, i aEE, I iIwI,

< at, ([A 21, [t a]) >
(12)

Vi 0 <i <wI +l,

< $i,{A 2],[i $1} >

The reduction plainly may be performed in polynomial time in the size of
the simulated ATM, by inspection.

No metarules or LP statements are needed, although metarules could have
been used instead of the Head Feature Convention. Both devices are capable of
transferring the contents of the ATM tape from the mother to the daughter(s).
One metarule would be needed for each tape square/tape symbol combination
in the ATM.

GKPS Definition 5.14 of Admissibility guarantees that admissible trees must
be terminated. 2 By the construction above - see especially the ID rule 10 -

"IThe admissibility of nonlocal trees is defined as follows (GKPS, p.104):

Definition: Admissibility

Let R be a set of ID rules. Then a tree t is admisjole from R if and only if

I t is terminated, and

2. every local subtree in t is either terminated or locally admissible from some
rE R.
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an [A 1] node can be terminated only if it is an accepting configuration (i.e.
it has halted and printed Y on its first square). This means the only admissible
trees are accepting ones whose yield is the input string followed by a very long
empty string.Q2.6.D

3.3 Sources of Intractability

The two sources of intractability in GPSG theory spotlighted by this reduction
are null-transitions in ID rules (see the ID rule 10 above), and universal feature
instantiation (in this case, the Head Feature Convention).

Grammars with unrestricted null-transitions can assign elaborate phrase
structure to the empty string, which is linguistically undesirable and compu-
tationally costly. The reduction must construct a GPSG G and input string x
in polynomial time such that z E L(G) iff w E L(M), where M is a PSPACE-
bounded ATM with input w. The 'polynomial time' constraint prevents us
from making either x or G too big. Null-transitions allow the grammar to
simulate the PSPACE ATM computation (and an Exp-Poly TM computation
indirectly) with an enormously long derivation string and then erase the string.
If the GPSG G were unable to erase the derivation string, G would only accept
strings which were exponentially larger than M and w, i.e. too big to write
down in polynomial time.

The Head Feature Condition transfers HEAD feature values from the mother
to the head daughters just in case they don't conflict. In the reduction we use
HEAD features to encode the ATM tape, and thereby use the HFC to transfer
the tape contents from one ATM configuration C (represented by the mother) to
its immediate successors Co,..., C, (the head daughters). The configurations
C, Co,..., C,, have identical tapes, with the critical exception of one tape square.
If the HFC enforced absolute agreement between the HEAD features of the
mother and head daughters, we would be unable to simulate the PSPACE ATM
computation in this manner.

4 Interpreting the Result

4.1 Generative Power and Computational Complexity

At first glance, a proof that GPSG-Recognition is Exp-Poly hard appears to
contradict the fact that context-free languages can be recognized in O(n') time
by a wide range of algorithms. To see why there is no contradiction, we must first

.4..'.
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explicitly state the argument from weak context-free generative power, which
we dub the efficient parsability (EP) argument.

The EP argument states that any GPSG can be converted into a weakly
equivalent context-free grammar (CFG), and that CFG-Recognition is polyno-
mial time; therefore, GPSG-Recognition must also be polynomial time. The
EP argument continues: if the conversion is fast, then GPSG-Recognition is
fast, but even if the conversion is slow, recognition using the "compiled" CFG
will still be fast, and we may justifiably lose interest in recognition using the
original, slow, GPSG.

The EP argument is misleading because it ignores both the effect conversion
has on grammar size, and the effect grammar size has on recognition speed. Cru-
cially, grammar size affects recognition time in all known algorithms, and the
only grammars directly usable by context-free parsers, i.e. with the same com-
plexity as a CFG, are those composed of context-free productions with atomic
nonterminal symbols. For GPSG, this is the set of admissible local trees, and
this set is astronomical:

0((3 rn' n 
2-

+
1) (13)

in a GPSG G of size m.1 3

Context-free parsers like the Earley algorithm run in time O( n' 2
where IG'I is the size of the CFG G' and n the input string length, so a GPSG
G of size m will be recognized in time

0(3 2  !m 2+ . n3) (14)

The hyper-exponential term will dominate the Earley algorithm complexity
in the reduction above because m is a function of the size of the ATM we are

13As we saw above, the metarule finite closure operation can increase the ID rule grammar
size from IRJ= O(1J ) to O(m 2") in a GPSG G of size m. We ignore the effects of ID/LP
format on the number of admissible local trees here, and note that if we expanded out all
admissible linear precedence possibilities in FC(M,R), the resultant 'ordered' ID rule grammar
would be of size O(m2m!). In the worst case, every symbol in FC(MR) is underspecified, and
every category in K extends every symbol in the FC(MR) grammar. Since there are

0(3 1 ')

possible syntactic categories, and O(m 2
-) symbols in FC(MR), the number of admissible

local trees (= atomic context-free productions) in 0 is

O ( ( 3 - ' ") m 2 ) = 0 ( 3 
' ' '

2 
+  I

i.e. astronomical. Ristad(1986) argues that the minimal set of admissible local trees in GKPS'
GPSG for English is considerably smaller, yet still contains more than 1033 local trees.

4.
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simulating. Even if the GPSG is held constant, the stunning derived grammar
size in formula 13 turns up as an equally stunning 'constant' multiplicative
factor in 14, which in turn will dominate the real-world performance of the
Earley algorithm for all expected inputs (i.e. any that can be written down in
the universe), every time we use the derived grammar. 14

Pullum(1985) has suggested that "examination of a suitable 'typical' GPSG
description reveals a ratio of only 4 to I between expanded and unexpanded
grammar statements," strongly implying that GPSG is efficiently processable as
a consequence. 5 But this "expanded grammar" is not adequately expanded, i.e.
it is not composed of context-free productions with unanalyzable nonterminal
symbols.' 6 These informal tractability arguments are a particular instance of
the more general EP argument and are equally misleading.

The preceding discussion of how intractability arises when converting a
GPSG into a weakly equivalent CFG does not in principle preclude the ex-
istence of an efficient compilation step. If the compiled grammar is truly fast
and assigns the same structural descriptions as the uncompiled GPSG, and it
is possible to compile the GPSG in practice, then the complexity of the univer-
sal recognition problem would not accurately reflect the real cost of parsing. 17

"The compiled grammar recognition problem is at least as intractable as the uncompiled
one. Even worse, Barton(1985) shows how the grammar expansion increases both the space
and time costs of recognition, when compared to the cost of using the grammar directly.

"sThis substantive argument does not appear to fit in with the GKPS goal of a purely formal
investigation of linguistics: "The universalism [of natural language] is, ultimately, intended to
be entirely embodied in the formal system, not expressed by statements made in it.'GKPS(4).
It is difficult to respond precisely to the claims made in Pullum(1985), since the abstract is
(necessarily) brief and consists of assertions unsupported by factual documentation or clari-
fying assumptions.

'"Expanded grammar" appears to refer to the output of metarule finite closure (i.e. ID
rules), and this expanded grammar is tractable only if the grammar is directly usable by the
Earley algorithm exactly as context-free productions are: all nonterminals in the context-free
productions must be unanalyzable. But the categories and ID rules of the metarule finite
closure grammar do not have this property. Nonterminals in GPSG are decomposable into
a complex set of feature specifications and cannot be made atomic, in part because not all
extensions of ID rule categories are legal. For example, the categories VP[.INV, WORM PAS]
and VPEIIV, VFORN FIN] are not legal extensions of VP in English, while VP[.IKV, *AUI.
VVOXM FIN] is. FCRs, FSDs, LP statements, and principles of universal feature instantiation
- all of which contribute to GPSG's intractability - must all still apply to the rules of this
expanded grammar.

Even if we ignore the significant computational complexity introduced by the machinery
mentioned in the previous paragraph (i.e. theory of syntactic features, FCRs, FSDs, ID/LP
format, null-transitions, and metarules), GPSG uil tal not obtain an efficient parsability result
This is because the Head Feature Convention alone ensures that the universal recognition
problem for GPSGs will be NP-hard and likely to be intractable. Ristad(1986) contains
a proof. This result should not be surprising, given that (1) principles of universal feature
instantiation in current G PSG theory replace the metarules of earlier versions of G PSG theory,
and (2) metarules are known to cause intractability in GPSG.

17The existence or nonexistence of efficient compilation functions does not affect either our
scientific interest in the universal grammar recognition problem or the power and relevance of
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But until such a suggestion is forthcoming, we must assume that it does not
exist.18,19

4.2 Complexity and Succinctness

The major complexity result of this paper proves that the fastest algorithm for
GPSG-Recognition must take more than exponential time. The immediately
preceding section demonstrates exactly how a particular algorithm for GPSG-
Recognition (the EP argument) comes to grief: weak context-free generative
power does not ensure efficient parsability because a GPSG G is weakly equiva-
lent to a very large CFG G', and CFG size affects recognition time. The rebut-
tal does not suggest that computational complexity arises from representational
succinctness, either here or in general.

Complexity results characterize the amount of resources needed to solve
instances of a problem, while succinctness results measure the space reduction
gained by one representation over another, equivalent, representation.

There is no casual connection between computational complexity and repre-

sentational succinctness, either in practice or principle. In practice, converting
one grammar into a more succinct one can either increase or decrease the recog-
nition cost. For example, converting an instance of context-free recognition
(known to be polynomial time) into an instance of context-sensitive recognition

a complexity analysis. If complexity theory classifies a problem as intractable, we learn that
something more must be said to obtain tractability, and that any efficient compilation step,
if it exists at all, must itself be costly.

IsNote that the GPSG we constructed in the preceding reduction will actually accept
any input z of length less than or equal to I w I if and only if the ATM M accepts it us-
ing S(i w 1) space. We prepare an input string z for the GPSG by converting it to the
string $0Z 11X22... zxnSn+l e.g. abadee is accepted by the ATM if and only if the string
$Oalb2a3d4e5e6$7 is accepted by the GPSG. Trivial changes in the grammar allows us to

.permute and "spread" the characters of z .cross an infinite class of strings in an unbounded
J number of ways, e.g. $O'Ylii 7 2 .. . 'yI.z11y6 .. - y$n+ I where each -1, is a string over an

alphabet which is distinct from the cri alphabet. Although the flexibility of this construction
results in a more complicated GPSG, it argues powerfully against the existence of any efficient
compilation procedure for GPSGs. Any efficient compilation procedure must perform more
than an exponential polynomial amount of work (GPSG-Recognition takes at least Exp-Poly
time) on at least an exponential number of inputs (all inputs that fit in the IwI space of the
ATM's read-only tape). More importantly, the required compilation procedure will convert
any exponential-polynomial time bounded Turing Machine into a polynomial-time TM for the
class inputs whose membership can be determined within a arbitrary (fixed) exp-poly time
bound. Simply listing the accepted inputs will not work because both the G PSG and TM may
accept an infinite class of inputs. Such a compilation procedure would he extremely powerful

19 Note that compilation illegitimately assumes that the compilation step is free. There is
one theory of primitive language learning and use: conjecture a grammar and use it For this
procedure to work, grammars should be easy to test on small inputs The overall complexity
of learning, testing, and speech must be considered. Compilation speeds up the speech com-

.# ponent at the expense of greater complexity in the other two components For this linguistic
reason the compilation argument is suspect
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(known to be PSPACE-complete and likely to be intractable) can significantly
speed the recognition problem if the conversion decreases the size of the CFG
logarithmically or better. Even more strangely, increasing ambiguity in a CFG

can speed recognition time if the succinctness gain is large enough, or slow it

down otherwise - unambiguous CFGs can be recognised in linear time, while

ambiguous ones require cubic time.

In principle, tractable problems may involve succinct representations. For

example, the iterating coordination schema (ICS) of GPSG is an unbeatably

succinct encoding of an infinite set of context-free rules; from a computational
complexity viewpoint, the ICS is utterly trivial using a slightly modified Earley
algorithm.2 0 Tractable problems may also be verbosely represented: consider a
random finite language, which may be recognised in essentially constant time on
a typical computer (using a hash table), yet whose elements must be individually
listed. Similarly, intractable problems may be represented both succinctly and

nonsuccinctly. As is well known, the Turing machine for any arbitrary r.e. set
may be either extremely small or monstrously big. Winning the game of chess
when played on an n x n board is likely to be computationally intractable, yet
the chess board is not intended to be an encoding of another representation,
succinct or otherwise.

'Tractable problems may involve succinct or nonsuccinct representations, as

may intractable problems. The reductions in this paper show that GPSGs
are not merely succinct encodings of some context-free grammars; they are
inherently complex grammars for some context-free languages. The heart of

the matter is that GPSG's formal devices are computationally complex and can
encode provably intractable problems.

4.3 Relevance of the Result

In this paper, we argued that there is nothing in the GPSG formal framework
that guarantees computational tractability: proponents of GPSG must look else-

where for an explanation of efficient parsability, if one is to be given at all.
The crux of the matter is that the complex components of GPSG theory in-

-. teract in intractable ways, and that weak context-free generative power does
not guarantee tractability when grammar sise is taken into account. A faithful
implementation of the GPSG formalisms of GKPS will provably be intractable;
expectations computational linguistics might have held in this regard are not
fulfilled by current GPSG theory.

This formal property of GPSGs is straightforwardly interesting to GPSG

"0A more extreme example of the unrelatedness of succinctness and complexity is the ab-
solute succinctness with which the dense language E" ma, be represented - whether by a
regular expression, CFG, or even Turing machine - yet members of E' may be recognized

,.in contant time (i.e. always accept).
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linguists. As outlined by GKPS, "an important goal of the GPSG approach to
linguistics jis] the construction of theories of the structure of sentences under
which significant properties of grammars and languages fall out as theorems as
opposed to being stipulated as axioms (p.4)."

The role of a computational analysis of the sort provided here is fundamen-
tally positive: it can offer significant formal insights into linguistic theory and
human language, and suggest improvements in linguistic theory and real-world
parsers. The insights gained may be used to revise the linguistic theory so that
it is both stronger linguistically and weaker formally. Work on revising GPSG is
in progress. Briefly, some proposed changes suggested by the preceding reduc-
tions are: unit feature closure, no FCRs or FSDs, no null-transitions in ID rules,
metarule unit closure, and no problematic feature specifications in the princi-
ples of universal feature instantiation. Not only do these restrictions alleviate

most of GPSG's computational intractability, but they increase the theory's
linguistic constraint and reduce the number of nonnatural language grammars
licensed by the theory. Unfortunately, there is insufficient space to discuss these
proposed revisions here - the reader is referred to Ristad(1986) for a complete
discussion.
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